Reexamining Low Rank Matrix Factorization for Trace Norm Regularization
نویسندگان
چکیده
Trace norm regularization is a widely used approach for learning low rank matrices. A standard optimization strategy is based on formulating the problem as one of low rank matrix factorization which, however, leads to a non-convex problem. In practice this approach works well, and it is often computationally faster than standard convex solvers such as proximal gradient methods. Nevertheless, it is not guaranteed to converge to a global optimum, and the optimization can be trapped at poor stationary points. In this paper we show that it is possible to characterize all critical points of the non-convex problem. This allows us to provide an efficient criterion to determine whether a critical point is also a global minimizer. Our analysis suggests an iterative meta-algorithm that dynamically expands the parameter space and allows the optimization to escape any non-global critical point, thereby converging to a global minimizer. The algorithm can be applied to problems such as matrix completion or multitask learning, and our analysis holds for any random initialization of the factor matrices. Finally, we confirm the good performance of the algorithm on synthetic and real datasets.
منابع مشابه
Low-rank optimization with trace norm penalty
The paper addresses the problem of low-rank trace norm minimization. We propose an algorithm that alternates between fixed-rank optimization and rank-one updates. The fixed-rank optimization is characterized by an efficient factorization that makes the trace norm differentiable in the search space and the computation of duality gap numerically tractable. The search space is nonlinear but is equ...
متن کاملTheoretical Analysis of Bayesian Matrix Factorization
Recently, variational Bayesian (VB) techniques have been applied to probabilistic matrix factorization and shown to perform very well in experiments. In this paper, we theoretically elucidate properties of the VB matrix factorization (VBMF) method. Through finite-sample analysis of the VBMF estimator, we show that two types of shrinkage factors exist in the VBMF estimator: the positive-part Jam...
متن کاملConsistency of Trace Norm Minimization
Regularization by the sum of singular values, also referred to as the trace norm, is a popular technique for estimating low rank rectangular matrices. In this paper, we extend some of the consistency results of the Lasso to provide necessary and sufficient conditions for rank consistency of trace norm minimization with the square loss. We also provide an adaptive version that is rank consistent...
متن کاملScalable Nuclear-norm Minimization by Subspace Pursuit Proximal Riemannian Gradient
Trace-norm regularization plays a vital role in many learning tasks, such as low-rank matrix recovery (MR), and low-rank representation (LRR). Solving this problem directly can be computationally expensive due to the unknown rank of variables or large-rank singular value decompositions (SVDs). To address this, we propose a proximal Riemannian gradient (PRG) scheme which can efficiently solve tr...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1706.08934 شماره
صفحات -
تاریخ انتشار 2017